# AUSTRALIAN PRODUCT INFORMATION - TAZOCIN EF® (PIPERACILLIN/TAZOBACTAM) POWDER FOR INJECTION

# 1. NAME OF THE MEDICINE

Piperacillin sodium/Tazobactam sodium

# 2. QUALITATIVE AND QUANTITATIVE COMPOSITION

TAZOCIN EF is an injectable antibacterial combination, consisting of the semisynthetic antibiotic piperacillin sodium and the  $\beta$ -lactamase inhibitor tazobactam sodium, for intravenous administration.

Each vial of TAZOCIN EF contains piperacillin/tazobactam injection 4.0 g/0.5 g.

For the full list of excipients, see Section 6.1 - List of excipients.

# 3. PHARMACEUTICAL FORM

Powder for injection.

TAZOCIN EF is available as a white to off-white sterile, cryodesiccated powder of piperacillin and tazobactam as the sodium salts packaged in glass vials.

# 4. CLINICAL PARTICULARS

# 4.1 Therapeutic indications

TAZOCIN EF is indicated in the treatment of serious bacterial infections caused by susceptible strains of  $\beta$ -lactamase producing organisms in the conditions listed below:

- 1. Lower respiratory tract infections
- 2. Urinary tract infections (complicated and uncomplicated)
- 3. Intra-abdominal infections
- 4. Skin and skin structure infections
- 5. Bacterial septicaemia
- 6. Gynaecological infections

# Children under the age of 12 years

In hospitalised children aged 2 to 12 years, TAZOCIN EF is indicated for the treatment of serious intra-abdominal infections. It has not been evaluated in this indication for paediatric patients below the age of 2 years.

While TAZOCIN EF is indicated only for the conditions listed above, it may be used as a single agent in the treatment of mixed infections caused by piperacillin susceptible and  $\beta$ -lactamase producing, piperacillin-resistant organisms. Appropriate culture and susceptibility tests should be performed before treatment in order to identify organisms causing infection to determine their susceptibilities to TAZOCIN EF. Therapy with TAZOCIN EF, however, may be initiated before results of such tests are known when there is reason to believe the infection may involve any of the  $\beta$ -lactamase producing organisms listed above; however, once these results become available, appropriate therapy should be continued.

In serious infections, presumptive therapy with TAZOCIN EF may be initiated before susceptibility test results are available.

Note: For associated bacteraemia due to extended-beta-lactamase (ESBL) producing organisms, see Section 5.1 – Pharmacodynamic properties.

Combination therapy with TAZOCIN EF and aminoglycosides may be used in the treatment of serious infections caused by *Pseudomonas aeruginosa*. Both drugs should be used in full therapeutic doses. As soon as results of culture and susceptibility tests become available, antimicrobial therapy should be adjusted.

#### 4.2 Dose and method of administration

#### **Dosage**

TAZOCIN EF may be given by slow intravenous infusion (20-30 minutes).

# Adults and children 12 years and older

The usual intravenous dosage for adults and children with normal renal function is 4 g piperacillin/0.5 g tazobactam given every eight hours.

The total daily dose depends on the severity and localisation of the infection and can vary from 2 g piperacillin/0.25 g tazobactam to 4 g piperacillin/0.5 g tazobactam administered every six or eight hours.

#### Children under the age of 12 years

## Hospitalised children with intra-abdominal infection

For children aged 2 to 12 years, weighing up to 40 kg, and with normal renal function, the recommended intravenous dosage is 100 mg piperacillin/12.5 mg tazobactam per kilogram every 8 hours.

For children aged 2 to 12 years, weighing over 40 kg, and with normal renal function, follow the adult dose guidance, i.e. 4 g piperacillin/0.5 g tazobactam every 8 hours.

The duration of therapy should be guided by the severity of the infection and the patient's clinical and bacteriological progress. Therapy is recommended to be a minimum of 5 days and a maximum of 14 days, considering that dose administration should continue at least 48 hours after the resolution of clinical signs and symptoms.

# Dosage adjustment

# Renal impairment

In patients with renal impairment or in haemodialysis patients, the intravenous dose and administration interval should be adjusted to the degree of actual renal function impairment. The suggested daily doses are as follows:

Intravenous dosage schedule for adults with impaired renal function

| Creatinine (mL/min) | Clearance | Recommended Piperacillin/Tazobactam Dosage                                  |
|---------------------|-----------|-----------------------------------------------------------------------------|
| > 40                |           | No dosage adjustment necessary                                              |
| 20-40               |           | 12 g/1.5 g/day<br>Divided Doses<br>4 g piperacillin/0.5 g tazobactam q 8 hr |
| < 20                |           | 8 g/1 g/day<br>Divided Doses<br>4 g piperacillin/0.5 g tazobactam q 12 hr   |

For patients on haemodialysis, the maximum daily dose is 8 g piperacillin/1 g tazobactam. In addition, because haemodialysis removes 30%-50% of piperacillin in 4 hours, one additional dose of 2 g piperacillin/0.25 g tazobactam should be administered following each dialysis period. For patients with renal failure and hepatic insufficiency, measurement of serum levels of piperacillin and tazobactam will provide additional guidance for adjusting dosage.

# Children aged 2 to 12 years

The pharmacokinetics of piperacillin/tazobactam have not been studied in paediatric patients with renal impairment. Each patient must be monitored closely for signs of drug toxicity. Drug dose and interval should be adjusted accordingly.

## **Duration of therapy**

In acute infections, treatment with TAZOCIN EF should be for a minimum of five days and continued for 48 hours beyond resolution of clinical symptoms or the fever.

# Co-administration of piperacillin/tazobactam with aminoglycosides

Due to the *in-vitro* inactivation of the aminoglycoside by beta-lactam antibiotics, piperacillin/tazobactam and the aminoglycoside are recommended for separate administration. Piperacillin/tazobactam and the aminoglycoside should be reconstituted and diluted separately when concomitant therapy with aminoglycosides is indicated.

In circumstances where co-administration is preferred, TAZOCIN EF is compatible for simultaneous co-administration via Y-site infusion only with the following aminoglycosides under the following conditions:

| Aminoglycoside | Piperacillin/<br>Tazobactam<br>Dose (grams) | Piperacillin/<br>Tazobactam Diluent<br>Volume (mL) | Aminoglycoside<br>Concentration<br>Range <sup>‡</sup><br>(mg/mL) | Acceptable<br>Diluents                      |
|----------------|---------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|
| Amikacin       | 2.25, 4.5                                   | 50, 150                                            | 1.75 – 7.5                                                       | 0.9%<br>sodium<br>chloride or<br>5% glucose |
| Gentamicin     | 2.25, 4.5                                   | 50, 150                                            | 0.7 – 3.32                                                       | 0.9%<br>sodium<br>chloride or<br>5% glucose |

<sup>&</sup>lt;sup>‡</sup> The dose of aminoglycoside should be based on patient weight, status of infection (serious or life threatening) and renal function (creatinine clearance).

Compatibility of TAZOCIN EF with other aminoglycosides has not been established. Only the concentration and diluents for amikacin and gentamicin with the dosages of TAZOCIN EF listed in the above table have been established as compatible for co-administration via Y-site infusion. Simultaneous co-administration via Y-site in any manner other than listed above may result in inactivation of the aminoglycoside by piperacillin/tazobactam (see Section 4.5 - Interactions with other medicines and other forms of interactions and Section 6.2 - Incompatibilities).

#### Method of administration

For intravenous use only.

# **Reconstitution directions**

Swirl until dissolved. When swirled constantly, reconstitution should occur within 10 minutes.

Diluents for reconstitution: Sterile water for injections

0.9% Sodium chloride injection

Glucose 5% injection

Reconstitute each vial with the volume of diluent shown in the table below, using one of the above diluents.

| Vial size                 | Minimum volume of diluent to be added to vial |
|---------------------------|-----------------------------------------------|
| (piperacillin/tazobactam) |                                               |
| 4.50 g (4 g/0.5 g)        | 20 mL                                         |

The reconstituted solution may be further diluted to the desired volume (e.g. 50 mL to 150 mL) with one of the compatible solvents for intravenous use listed below.

- Sterile water for injections<sup>‡</sup>
- Saline
- 5% Glucose
- Hartmann's solution for injection (only compatible with TAZOCIN EF and is compatible for co-administration via a Y-site).

# 4.3 Contraindications

The use of TAZOCIN EF is contraindicated in patients with a history of allergic reactions to any of the penicillins and/or cephalosporins or  $\beta$ -lactamase inhibitors or any of its excipients.

# 4.4 Special warnings and precautions for use

Serious and occasionally fatal hypersensitivity (anaphylactic/anaphylactoid [including shock]) reactions have been reported in patients on penicillin/cephalosporin therapy, Although anaphylaxis is more frequent following including piperacillin/tazobactam. parenteral therapy, it has occurred in patients on oral penicillins/cephalosporins. reactions are more likely to occur in individuals with a history of penicillin hypersensitivity and/or a history of sensitivity to multiple allergens. There have been reports of individuals with a history of penicillin/cephalosporin hypersensitivity who have experienced severe reactions when treated with either a penicillin or cephalosporin. Past history of a severe allergic reaction to penicillin/cephalosporin is a contraindication to the use of TAZOCIN EF. Before initiating therapy with any penicillin/cephalosporin, careful inquiry should be made concerning previous hypersensitivity reactions to penicillins, cephalosporins or other allergens. If an allergic reaction occurs, TAZOCIN EF should be discontinued and the appropriate therapy instituted. Serious anaphylactic/anaphylactoid reactions (including shock) require immediate emergency treatment with adrenaline. Oxygen, intravenous steroids and airway management, including intubation, should also be administered as indicated.

Severe cutaneous adverse reactions (SCAR), such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and acute generalised exanthematous pustulosis (AGEP) have been reported in patients taking beta-lactam antibiotics. When SCAR is suspected, TAZOCIN EF should be discontinued immediately and an alternative treatment should be considered.

Rare cases of haemophagocytic lymphohistiocytosis (HLH) have been observed following therapy (>10 days) with piperacillin/tazobactam, often as a complication of DRESS. HLH is a pathologic immune activation which leads to excessive systemic inflammation and can be life threatening and early diagnosis and rapid initiation of immunosuppressive therapy is essential. Characteristic signs and symptoms include fever, hepatosplenomegaly, cytopenias, hyperferritinaemia, hypertriglyceridaemia, hypofibrinogenaemia, and haemophagocytosis. If piperacillin/tazobactam is suspected as possible trigger, treatment should be discontinued.

Rhabdomyolysis has been reported with the use of piperacillin/tazobactam. If signs or symptoms of rhabdomyolysis are observed, piperacillin/tazobactam should be discontinued and appropriate therapy initiated.

<sup>&</sup>lt;sup>‡</sup> Maximum recommended volume of sterile water for injections per dose is 50 mL.

Antibiotic-associated pseudomembranous colitis has been reported with many antibiotics including piperacillin. A toxin produced by *Clostridioides difficile* appears to be the primary cause. The severity of the colitis may range from mild to life-threatening. It is important to consider this diagnosis in patients who develop diarrhoea or colitis in association with antibiotic use (this may occur up to several weeks after cessation of antibiotic therapy). Mild cases usually respond to drug discontinuation alone. However, in moderate to severe cases appropriate therapy with a suitable oral antibacterial agent effective against *C. difficile* should be considered. Fluids, electrolytes and protein replacement should be provided when indicated. Drugs that delay peristalsis e.g. opiates and diphenoxylate with atropine may prolong and/or worsen the condition and should not be used.

Leucopenia and neutropenia may occur, especially during prolonged therapy. Therefore, periodic assessment of haematopoietic function should be performed.

As with treatment with other penicillins, neurological complications in the form of convulsions (seizures) may occur when high doses are administered, especially in patients with impaired renal function (see Section 4.8 - Adverse effects (undesirable effects)).

As with other antibiotic preparations, use of this drug may result in overgrowth of non-susceptible organisms, including fungi. Patients should be carefully monitored during therapy. If superinfection occurs, appropriate measures should be taken.

# Use with caution in the following circumstances

Bleeding manifestations have occurred in some patients receiving piperacillin. These reactions have sometimes been associated with abnormalities of coagulation tests such as clotting time, platelet aggregation and prothrombin time and are more likely to occur in patients with renal failure. If bleeding manifestations occur, the antibiotic should be discontinued and appropriate therapy instituted.

The possibility of the emergence of resistant organisms that might cause superinfections should be kept in mind, particularly during prolonged treatment. If this occurs, appropriate measures should be taken.

As with other penicillins, patients may experience neuromuscular excitability or convulsions if higher than recommended doses are given intravenously.

Combined administration of  $\beta$ -lactamase inhibitors and  $\beta$ -lactam antibiotics may be associated with a slightly increased risk of hepatic adverse reactions. The incidence of increased liver enzymes in patients treated with TAZOCIN EF was slightly higher than has been reported previously with the use of piperacillin alone. The potential for increased hepatic adverse reactions should be borne in mind when using TAZOCIN EF.

Combined use of **piperacillin/tazobactam** and **vancomycin** may be associated with an increased risk of acute kidney injury.

# Check the following before use

Periodical assessment of organ system functions including renal, hepatic and haematopoietic during prolonged therapy ( $\geq$ 21 days) is advisable.

This product contains 2.84 mEq (65 mg) of sodium per gram of piperacillin, which may increase a patient's overall sodium intake. The theoretical sodium content of each vial of TAZOCIN EF is:

4.5 g vial: 260 mg sodium

Periodical electrolyte determinations should be made in patients with low potassium reserves and the possibility of hypokalaemia should be kept in mind with patients who have potentially low potassium reserves and who are receiving cytotoxic therapy or diuretics.

Because of its poor penetration into the CSF, piperacillin is not advised in the treatment of meningitis and brain abscess.

Antimicrobials used in high doses for short periods to treat gonorrhoea may mask or delay symptoms of incubating syphilis. Therefore, prior to treatment, patients with gonorrhoea should also be evaluated for syphilis. Specimens for darkfield examination should be obtained from patients with any suspected primary lesion and serological tests should be made for a minimum of 4 months.

## Use in renal impairment

Due to its potential nephrotoxicity (see Section 4.8 - Adverse effects (undesirable effects)), piperacillin/tazobactam should be used with care in patients with renal impairment or dialysis patients (haemodialysis and CAPD). The intravenous dose and administration interval should be adjusted to the degree of renal function impairment. Measurement of serum levels of piperacillin will provide guidance for adjusting dosage (see Section 4.2 - Dose and method of administration).

In a secondary analysis using data from a large multicenter, randomised-controlled trial when glomerular filtration rate (GFR) was examined after administration of frequently used antibiotics in critically ill patients, the use of piperacillin/tazobactam was associated with a lower rate of reversible GFR improvement compared with the other antibiotics. This secondary analysis concluded that piperacillin/tazobactam was a cause of delayed renal recovery in these patients.

Combined use of piperacillin/tazobactam and vancomycin may be associated with an increased incidence of acute kidney injury (see Section 4.5 - Interactions with other medicines and other forms of interactions).

# Use in the elderly

No data available.

#### Paediatric use

Safety and efficacy of the use of TAZOCIN EF in children under the age of 2 years has not yet been established.

# Effects on laboratory tests

As with other penicillins, the administration of piperacillin/tazobactam may result in a false-positive reaction for glucose in the urine using a copper-reduction method. It is recommended that glucose tests based on enzymatic glucose oxidase reactions be used.

There have been reports of positive test results using Bio-Rad Laboratories Platelia Aspergillus enzyme immunoassay (EIA) test in patients receiving piperacillin/tazobactam injection, who were subsequently found to be free of Aspergillus infection. Cross-reactions with non-Aspergillus polysaccharides and polyfuranoses with Bio-Rad Laboratories Platelia Aspergillus EIA test have been reported. Therefore, positive test results in patients receiving TAZOCIN EF should be interpreted cautiously and confirmed by other diagnostic methods.

# 4.5 Interactions with other medicines and other forms of interactions

# **Aminogly cosides**

The mixing of beta-lactam antibiotics with aminoglycosides *in-vitro* can result in substantial inactivation of the aminoglycoside. However, amikacin and gentamicin were determined to be compatible *in-vitro* with TAZOCIN EF in certain diluents at specific concentrations for a simultaneous Y-site infusion (see Section 4.2 - Dose and method of administration and Section 6.2 - Incompatibilities).

The inactivation of aminoglycosides in the presence of penicillin class drugs has been recognised. It has been postulated that penicillin-aminoglycoside complexes form; these complexes are microbiologically inactive and of unknown toxicity.

Concurrent administration of piperacillin and tobramycin in patients with severe renal dysfunction (i.e. chronic haemodialysis patients) has been reported to reduce the elimination half-life and significantly increase the total body clearance of tobramycin.

The alteration of tobramycin pharmacokinetics in patients with mild to moderate renal dysfunction who are taking piperacillin concomitantly is unknown. However, reports suggest that the aminoglycoside inactivation in patients concomitantly taking an aminoglycoside with a broad-spectrum beta-lactam penicillin is only clinically significant in patients with severe renal dysfunction.

# **Probenecid**

Concurrent administration of probenecid and TAZOCIN EF produces a longer half-life and lower renal clearance for both piperacillin and tazobactam. However, peak plasma concentrations of neither drug are affected.

# Vancomycin

Studies have detected an increased incidence of acute kidney injury in patients concomitantly administered piperacillin/tazobactam and vancomycin as compared to vancomycin alone (see Section 4.4 - Special warnings and precautions for use). Some of these studies have reported that the interaction is vancomycin dose-dependent. Expert guidelines recommend intensive vancomycin dosing and maintenance of trough levels between 15 mg/L and 20 mg/L which is an increase from previously published recommendations of target trough concentrations of 5-

10 mg/L. Attaining these trough concentrations often requires practitioners to prescribe vancomycin doses which exceed manufacturers' recommendations. Therefore, it is possible that in addition to the increased risk of vancomycin-induced nephrotoxicity reported with adherence to these guidelines the risk of nephrotoxicity may also increase due to an interaction with piperacillin/tazobactam.

# Non-depolarizing muscle relaxants

Piperacillin when used concomitantly with vecuronium has been implicated in the prolongation of the neuromuscular blockade of vecuronium. TAZOCIN EF (piperacillin/tazobactam) could produce the same phenomenon if given along with vecuronium. Due to their similar mechanism of action, it is expected that the neuromuscular blockade produced by any of the non-depolarising muscle relaxants could be prolonged in the presence of piperacillin.

#### Methotrexate

Piperacillin may reduce the excretion of methotrexate; therefore, serum levels of methotrexate should be monitored in patients to avoid drug toxicity.

# **Anticoagulants**

During simultaneous administration of heparin, oral anticoagulants and other medicines that may affect the blood coagulation system including the thrombocyte function, appropriate coagulation tests should be performed more frequently and monitored regularly.

# 4.6 Fertility, pregnancy and lactation

# **Effects on fertility**

Piperacillin and tazobactam did not affect the fertility of male or female rats.

# Use in pregnancy – Pregnancy Category B1

Adequate human studies on the use of TAZOCIN EF during pregnancy are not available. Limited studies with piperacillin alone in rats and mice revealed no teratogenic effects or harm to the fetus. Studies with tazobactam (doses up to 3000 mg/kg IV) or tazobactam and piperacillin (doses up to 750 mg/kg and 3000 mg/kg IV) in mice showed no evidence of teratogenicity or harm to the fetus. Studies in rats at these dose levels showed no evidence of teratogenicity though maternal toxicity, in the form of decreased weight gain, was noted at the dose levels tested. Piperacillin and tazobactam cross the placenta in humans. Pregnant women should be treated only if the expected benefit outweighs the possible risks to the pregnant woman and fetus.

## Use in lactation

Adequate clinical studies on the use of TAZOCIN EF during lactation are not available. Piperacillin is excreted in low concentrations in human milk; tazobactam concentrations in human milk have not been studied. In animal studies, both piperacillin and tazobactam were excreted in the milk of lactating rats. Women who are breast-feeding should be treated only if the expected benefit outweighs the possible risks to the woman and child.

# 4.7 Effects on ability to drive and use machines

The effects of this medicine on a person's ability to drive and use machines were not assessed as part of its registration.

# 4.8 Adverse effects (undesirable effects)

TAZOCIN EF is generally well tolerated. The overall incidence of adverse events was 15.7% although a cause/effect relationship was not established in all cases. This incidence was comparable to that observed with other agents used in the clinical studies. Treatment had to be discontinued in only 2.9% of cases due to adverse reactions.

The most frequently reported adverse clinical reactions were diarrhoea, rash, erythema, pruritus, vomiting, allergic reactions, nausea, urticaria, superinfection, phlebitis, thrombophlebitis, dyspepsia, and insomnia.

The following adverse reactions have been reported in clinical trials and are listed in CIOMS frequency categories as follows:

Very common  $\geq 10\%$ 

Common  $\geq 1\%$  and  $\leq 10\%$ 

Uncommon:  $\geq 0.1\%$  and  $\leq 1\%$ 

Rare:  $\geq 0.01\%$  and < 0.1%

Very rare: <0.01%

Unknown Cannot be estimated from available data

# Infections and infestations

Rare: Pseudomembranous colitis

#### Skin and subcutaneous tissue disorders

Common: Rash

Uncommon: Pruritus, urticaria

Rare: Eruption (including dermatitis bullous), purpura

Unknown: Increased sweating, eczema, exanthema

# Gastrointestinal disorders

Common: Diarrhoea (including soft/loose stools), nausea, vomiting

Uncommon: Constipation, dyspepsia, stomatitis

Rare: Abdominal pain

# Psychiatric disorders

Uncommon: Insomnia

Nervous system disorders

Uncommon: Headache

Unknown: Hallucination, dizziness, dry mouth

Musculoskeletal and connective tissue disorders

Rare: Arthralgia

Unknown: Muscular weakness, myalgia, prolonged muscle relaxation

Vascular disorders

Uncommon: Phlebitis, hypotension, thrombophlebitis

Rare: Flushing

Unknown: Tachycardia, including supraventricular and ventricular; bradycardia;

arrhythmia, including atrial fibrillation, ventricular fibrillation, cardiac arrest,

cardiac failure, circulatory failure, myocardial infarction

Respiratory, thoracic and mediastinal disorders

Rare: Epistaxis

Blood and lymphatic system disorders

Uncommon: Leucopenia, neutropenia, thrombocytopenia

Rare: Anaemia, eosinophilia

Very rare: Disturbed thrombocyte function

Renal and urinary disorders

Rare: Tubulointerstitial nephritis, renal failure

Metabolism and nutrition disorders

Very rare: Hypokalaemia

Hypokalaemia was reported in patients with liver disease and those receiving cytotoxic therapy or diuretics when given high doses of piperacillin.

General disorders and administration site conditions

Uncommon: Pyrexia, injection site reaction (pain, inflammation)

Version: pfptazev10624 Supersedes: pfptazev10424

Page 11 of 25

Rare: Chills

Unknown: Hot flushes, oedema, tiredness

# **Investigations**

Uncommon: Alanine aminotransferase increased, aspartate aminotransferase increased,

blood creatinine increased

Rare: Bleeding time prolonged, blood bilirubin increased<sup>†</sup>, blood alkaline

phosphatase increased<sup>†</sup>, gamma-glutamyltransferase increased<sup>†</sup>.

Very rare: Coombs direct test positive, activated partial thromboplastin time prolonged,

prothrombin time prolonged, blood albumin decreased, blood glucose

decreased, blood total protein decreased, blood urea increased

# **Post-marketing Experience**

Additional adverse events reported from worldwide marketing experience with TAZOCIN EF, occurring under circumstances where causal relationship with TAZOCIN EF is uncertain.

# Blood and lymphatic system disorders

Rare: Haemolytic anaemia

Very rare: Agranulocytosis, pancytopenia, thrombocytosis

#### Immune system disorders

Uncommon: Hypersensitivity

Rare: Anaphylactoid shock, anaphylactic shock, anaphylactoid reaction,

anaphylactic reaction

Not known: Kounis syndrome\*

# Psychiatric disorders

Not known: Delirium

# Nervous system disorders

Uncommon: Seizure

# Infections and infestations

Uncommon: Candida infection (especially with prolonged treatment)

# Respiratory, thoracic and mediastinal disorders

Unknown: Eosinophilic pneumonia

Version: pfptazev10624 Supersedes: pfptazev10424

Page 12 of 25

<sup>&</sup>lt;sup>†</sup> The incidence is higher than with piperacillin alone.

# Renal and urinary disorders

Rare: Interstitial nephritis, renal failure

Unknown: Acute renal injury

#### Skin and subcutaneous tissue disorders

Uncommon: Rash maculopapular

Rare: Erythema multiforme

Very rare: Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN)

Unknown: Drug reaction with eosinophilia and systemic symptoms (DRESS), acute

generalised exanthematous pustulosis (AGEP), dermatitis exfoliative

#### Musculoskeletal and connective tissue disorders

Not known: Rhabdomyolysis

# Hepatobiliary disorders

Uncommon: Jaundice

Rare: Hepatitis

Piperacillin therapy has been associated with an increased incidence of fever and rash in cystic fibrosis patients.

# Reporting suspected adverse effects

Reporting suspected adverse reactions after registration of the medicinal product is important. It allows continued monitoring of the benefit-risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions at www.tga.gov.au/reporting-problems.

#### 4.9 Overdose

There have been post-marketing reports of overdose with piperacillin/tazobactam. The majority of those events experienced including nausea, vomiting, and diarrhoea have also been reported with the usual recommended dosages. Patients may experience neuromuscular excitability or convulsions if higher than recommended doses are given intravenously (particularly in the presence of renal failure).

No specific antidote is known. Treatment should be supportive and symptomatic according to the patient's clinical presentation. In the event of an emergency, all required intensive medical measures are indicated as in the case of piperacillin. In cases of motor excitability or convulsions, anticonvulsive agents (e.g. diazepam or barbiturates) may be indicated. In cases

<sup>\*</sup>Acute coronary syndrome associated with an allergic reaction

of anaphylactic reactions, the usual counter measures are to be initiated (adrenaline, antihistamines, corticosteroids and, if required, oxygen and airway management).

Excessive serum concentrations of either piperacillin or tazobactam may be reduced by haemodialysis.

For information on the management of overdose, contact the Poisons Information Centre on 13 11 26 (Australia).

# 5. PHARMACOLOGICAL PROPERTIES

# 5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antibacterials for systemic use, Combinations of penicillins incl. beta-lactamase inhibitors; ATC code: J01C R05

#### Mechanism of action

Piperacillin, a broad spectrum, semisynthetic penicillin active against many Gram-positive and Gram-negative aerobic and anaerobic bacteria, exerts bactericidal activity by inhibition of both septum and cell wall synthesis. Tazobactam, a triazolylmethyl penicillanic acid sulfone, is a potent inhibitor of many  $\beta$ -lactamases, including the plasmid and chromosomally mediated enzymes that commonly cause resistance to penicillins. The presence of tazobactam in the TAZOCIN EF formulation enhances and extends the antibiotic spectrum of piperacillin to include many  $\beta$ -lactamase producing bacteria normally resistant to it. Thus, TAZOCIN EF combines the properties of a broad-spectrum antibiotic and a  $\beta$ -lactamase inhibitor.

Piperacillin and other  $\beta$ -lactam antibiotics block the terminal transpeptidation step of cell wall peptidoglycan biosynthesis in susceptible bacteria by interacting with penicillin-binding proteins (PBPs), the bacterial enzymes that carry out this reaction. *In vitro*, piperacillin is active against a variety of gram-positive and gram-negative aerobic and anaerobic bacteria.

Piperacillin has reduced activity against bacteria harboring certain  $\beta$ -lactamase enzymes, which chemically inactivate piperacillin and other  $\beta$ -lactam antibiotics. Tazobactam sodium, which has very little intrinsic antimicrobial activity, due to its low affinity for PBPs, can restore or enhance the activity of piperacillin against many of these resistant organisms. Tazobactam is a potent inhibitor of many class A  $\beta$ -lactamases (penicillinases, cephalosporinases and extended spectrum enzymes). It has variable activity against class A carbapenemases and class D  $\beta$ -lactamases. It is not active against most class C cephalosporinases and inactive against Class B metallo- $\beta$ -lactamases.

Two features of piperacillin/tazobactam lead to increased activity against some organisms harboring  $\beta$ -lactamases that, when tested as enzyme preparations, are less inhibited by tazobactam and other inhibitors: tazobactam does not induce chromosomally mediated  $\beta$ -lactamases at tazobactam levels achieved with the recommended dosing regimen and piperacillin is relatively refractory to the action of some  $\beta$ -lactamases.

Like other  $\beta$ -lactam antibiotics, piperacillin, with or without tazobactam, demonstrates time-dependent bactericidal activity against susceptible organisms.

#### Mechanism of resistance

There are three major mechanisms of resistance to  $\beta$ -lactam antibiotics: changes in the target penicillin-binding proteins (PBPs) resulting in reduced affinity for the antibiotics, destruction of the antibiotics by bacterial  $\beta$ -lactamases, and low intracellular antibiotic levels due to reduced uptake or active efflux of the antibiotics.

In gram-positive bacteria, changes in PBPs are a major mechanism of resistance to  $\beta$ -lactam antibiotics, including piperacillin/tazobactam. This mechanism is responsible for methicillin resistance in staphylococci and penicillin resistance in *Streptococcus pneumoniae* as well as viridans group streptococci and enterococci. Resistance caused by changes in PBPs also occurs to a lesser extent in fastidious gram-negative species such as *Haemophilus influenzae* and *Neisseria gonorrhoeae*. Piperacillin/tazobactam is not active against strains in which resistance to  $\beta$ -lactam antibiotics is determined by altered PBPs. As indicated above, there are some  $\beta$ -lactamases that are not inhibited by tazobactam.

# Antibacterial spectrum (Groupings of relevant species according to piperacillin/tazobactam susceptibility)

# **Commonly susceptible species**

# Aerobic gram-negative bacteria

Citrobacter koseri Haemophilus influenzae Moraxella catarrhalis Proteus mirabilis

# Aerobic gram-positive bacteria

Enterococcus faecalis (ampicillin-or penicillin-susceptible isolates only)
Listeria monocytogenes
Staphylococcus aureus (methicillin-susceptible isolates only)
Staphylococcus spp., coagulase-negative (methicillin-susceptible isolates only)
Streptococcus agalactiae (Group B streptococci)<sup>†</sup>
Streptococcus pyogenes (Group A streptococci)<sup>†</sup>

### Anaerobic gram-positive bacteria

Clostridium spp.
Eubacterium spp.
Anaerobic gram-positive cocci<sup>††</sup>

# Anaerobic gram-negative bacteria

Bacteroides fragilis group Fusobacterium spp. Porphyromonas spp. Prevotella spp.

# Species for which acquired resistance may be a problem

# Aerobic gram-positive bacteria

Enterococcus faecium Streptococcus pneumoniae<sup>††</sup> Viridans group streptococci<sup>††</sup>

# Aerobic gram-negative bacteria

Acinetobacter baumannii
Citrobacter freundii
Enterobacter spp.
Escherichia coli
Klebsiella pneumoniae
Morganella morganii
Proteus vulgaris
Providencia spp.
Pseudomonas aeruginosa
Serratia spp.

# **Inherently resistant organisms**

## Aerobic gram-positive bacteria

Corynebacterium jeikeium

# Aerobic gram-negative bacteria

Burkholderia cepacia Legionella spp. Stenotrophomonas maltophilia

#### Others

Chlamydophila pneumoniae Mycoplasma pneumoniae

# Disc Susceptibility Test

Susceptibility testing should be conducted using standardised laboratory methods such as those described by the Clinical and Laboratory Standards Institute (CLSI). These include dilution methods (minimal inhibitory concentration [MIC] determination) and disk susceptibility methods. Standardised susceptibility test procedures require the use of quality control micro-organisms to control the technical aspects of the laboratory procedures. Quality control microorganisms are specific strains with intrinsic biological properties relating to resistance mechanisms and their genetic expression within the microorganism; the specific strains used for susceptibility test quality control are not clinically significant.

<sup>†</sup> Streptococci are not β-lactamase producing bacteria; resistance in these organisms is due to alterations in PBPs and, therefore, piperacillin/tazobactam-susceptible isolates are susceptible to piperacillin alone. Penicillin resistance has not been reported in *S. pyogenes*.

<sup>††</sup> Including *Anaerococcus*, *Finegoldia*, *Peptococcus*, *Peptoniphilus*, and *Peptostreptococcus* spp. (CLSI M100 Ed. 29, 2019).

A report of "Susceptible" indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of "Intermediate" indicates that the result should be considered equivocal, and if the microorganism is not fully susceptible to alternative, clinically feasible medicines, the test should be repeated. This category implies possible clinical applicability in body sites where the medicine is physiologically concentrated or in situations where high dosage of the medicine can be used. This category also provides a buffer zone, which prevents small-uncontrolled technical factors from causing major discrepancies in interpretation. A report of "Resistant" indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.

Note: The prevalence of resistance may vary geographically for selected species and local information on resistance is desirable, particularly when treating severe infections. This information provides guidance on micro-organisms susceptible to piperacillin/tazobactam. The following MIC 90 values were reported in 1996 for clinical isolates collected in 3 Australian states<sup>1</sup>.

Table 1: MIC 90 for 1,952 clinically significant isolates

| Organism (number)                        | MIC90 (mg/L) |
|------------------------------------------|--------------|
| E.coli (528)                             | 2.0          |
| Klebsiella spp. (180)                    | 4.0          |
| Klebsiella spp. (ESBL 44)                | 64.0         |
| Enterobacter spp. (142)                  | 16.0         |
| Citrobacter/Serratia spp. (84)           | 8.0          |
| Morganella/Proteus/Providencia spp. (45) | 2.0          |
| Proteus mirabilis spp. (104)             | 2.0          |
| Pseudomonas aeruginosa (88)              | 32.0         |
| Acinetobacter calcoaceticus (40)         | 32.0         |
| Staphylococcus aureus (433)              | 4.0          |
| Coagulase-negative Staphylococcal (28)   | 16.0         |
| Streptococcus pneumoniae (45)            | 0.015        |
| Enterococci (109)                        | 4.0          |
| Haemophilus influenzae (59)              | 0.094        |
| Bacteroides fragilis gp (23)             | 4.0          |

The CLSI interpretive criteria for susceptibility testing of piperacillin/tazobactam are listed in the following table:

| CLSI Susceptibility | Interpretive ( | Criteria for | Piperacillin/ | <b>l'azobactam</b> |
|---------------------|----------------|--------------|---------------|--------------------|
|                     |                |              |               |                    |

| Pathogen                                              | Minimal Inhibitory<br>Concentration<br>(mg/L of Piperacillin) <sup>a</sup> |     |       |      | Disk <sup>b</sup> Diffusion Inhibition<br>Zone<br>(mm Diameter) |       |       |     |
|-------------------------------------------------------|----------------------------------------------------------------------------|-----|-------|------|-----------------------------------------------------------------|-------|-------|-----|
|                                                       | S                                                                          | SDD | I     | R    | S                                                               | SDD   | I     | R   |
| Enterobacterales <sup>c</sup>                         | ≤8                                                                         | 16  |       | ≥32  | ≥25                                                             | 21-24 |       | ≤20 |
| Pseudomonas aeruginosa <sup>d</sup>                   | ≤16                                                                        |     | 32    | ≥64  | ≥22                                                             |       | 18-21 | ≤17 |
| Acinetobacter spp.                                    | ≤16                                                                        |     | 32-64 | ≥128 | ≥21                                                             |       | 18-20 | ≤17 |
| Certain other non-<br>Enterobacterales <sup>e</sup>   | ≤16                                                                        |     | 32-64 | ≥128 |                                                                 |       |       |     |
| Haemophilus influenzae and Haemophilus parainfluenzae | ≤1                                                                         |     | -     | ≥2   | ≥21                                                             |       | -     | -   |
| Anaerobes <sup>f</sup>                                | ≤16                                                                        |     | 32-64 | ≥128 | -                                                               |       | -     | -   |

Source: Clinical and Laboratory Standards Institute. *Performance Standards for Antimicrobial Susceptibility Testing;* CLSI document M100:ED32 2022 . This document is updated annually and may be accessed at http://clsi-m100.com/.

Organisms and quality control ranges for piperacillin/tazobactam to be utilised with CLSI methodology and susceptibility test interpretive criteria are listed in the following table:

S = Susceptible. SDD = Susceptible dose-dependent. I = Intermediate. R = Resistant.

<sup>&</sup>lt;sup>a</sup> MICs are determined using a fixed concentration of 4 mg/L tazobactam and by varying the concentration of piperacillin.

 $<sup>^{</sup>b}$  CLSI inhibition zones are based on disks containing 100  $\mu g$  of piperacillin and 10  $\mu g$  of tazobactam.

<sup>&</sup>lt;sup>c</sup> Breakpoints for susceptible are based on a dosage regimen of 3.375-4.5 g administered every 6 h as a 30-min infusion. Breakpoints for SDD are based on a dosage regimen of 4.5 g administered every 6 h as a 3 h infusion or 4.5 g administered every 8 h as a 4 h infusion.

<sup>&</sup>lt;sup>d</sup>Breakpoints are based on a dosage regimen of at least 3 g piperacillin administered every 6 h.

<sup>&</sup>lt;sup>e</sup> Refer to CLSI Document M100 Table 2B-5 for the list of organisms included.

<sup>&</sup>lt;sup>f</sup> With the exception of *Bacteroides fragilis*, MICs are determined by agar dilution only. Susceptibility of *Staphylococcus aureus* to piperacillin/tazobactam is determined by the susceptibility to oxacillin (CLSI document M100 Table 2C. *Staphylococcus* spp.).

# Quality Control Ranges for Piperacillin/Tazobactam to be Used in Conjunction with CLSI Susceptibility Test Interpretive Criteria

| Quality Control Strain                                      | Minimal Inhibitory<br>Concentration<br>(mg/L of piperacillin) | Disk Diffusion<br>Inhibition Zone<br>(mm Diameter) |
|-------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|
| Escherichia coli ATCC 25922                                 | 1-4                                                           | 24-30                                              |
| Pseudomonas aeruginosa ATCC 27853                           | 1-8                                                           | 25-33                                              |
| Staphylococcus aureus ATCC 29213                            | 0.25-2                                                        | -                                                  |
| Staphylococcus aureus ATCC 25923                            | -                                                             | 27-36                                              |
| Enterococcus faecalis ATCC 29212                            | 1-4                                                           |                                                    |
| Escherichia coli ATCC 35218                                 | 0.5-2                                                         | 24-30                                              |
| Klebsiella pneumoniae ATCC 700603                           | 8-32                                                          |                                                    |
| Haemophilus influenzae ATCC 49247                           | 0.06-0.5                                                      | 33-38                                              |
| Bacteroides fragilis ATCC 25285                             | $0.12 - 0.5^{a}$                                              | -                                                  |
| Bacteroides thetaiotaomicron<br>ATCC 29741                  | 4-16 <sup>a</sup>                                             | -                                                  |
| Clostridioides (formerly Clostridium) difficile ATCC 700057 | 4-16 <sup>a</sup>                                             |                                                    |
| Eggerthella lenta (formerly Eubacterium lentum) ATCC 43055  | 4-16 <sup>a</sup>                                             |                                                    |

Source: Clinical and Laboratory Standards Institute. *Performance Standards for Antimicrobial Susceptibility Testing*, CLSI document M100ED32 2022.

<sup>&</sup>lt;sup>a</sup> These ranges are for agar dilution only.

#### Clinical trials

# MERINO trial (blood stream infections due to ESBL producing organisms)

In a prospective, randomised non-inferiority clinical trial, definitive (i.e. based on susceptibility confirmed *in-vitro*) treatment with piperacillin/tazobactam did not meet non-inferiority versus meropenem in regard to 30-day mortality in the treatment of blood stream infections due to ESBL producing *E. coli* or *Klebsiella pneumoniae* in critically ill adult patients. A total of 23 of 187 patients (12.3%) randomised to piperacillin/tazobactam met the primary outcome of mortality at 30 days compared with 7 of 191 (3.7%) randomised to meropenem (risk difference, 8.6% [1-sided 97.5% CI:  $-\infty$  to 14.5%]; P = 0.90 for non-inferiority). Clinical and microbiological resolution by day 4 occurred in 121 of 177 patients (68.4%) in the piperacillin/tazobactam group compared with 138 of 185 (74.6%), randomised to meropenem (risk difference, -6.2% [95% CI: -15.5 to 3.1%]; P = 0.19). The cause of the mortality imbalance is not clear. This study was not sponsored by Pfizer.

#### **Paediatric**

A study was performed to compare the safety, tolerance, and efficacy of 100 mg/kg piperacillin/12.5 mg/kg tazobactam with those of 50 mg/kg cefotaxime plus 7.5 mg/kg metronidazole administered intravenously (IV) every 8 hours for the treatment of hospitalised paediatric patients (aged 2 to 12 years of age) with clinically or bacteriologically diagnosed intra-abdominal infection (IAI). The cure rates in the efficacy evaluable (EE) population at the follow-up visit were 90% and 91% for piperacillin/tazobactam and cefotaxime plus metronidazole, respectively. The results of the clinical and microbiological analyses in 521 patients showed that piperacillin/tazobactam (TAZOCIN EF) administered intravenously was at least as effective as cefotaxime plus metronidazole in the treatment of children aged 2 to 12 years with severe IAIs.

# 5.2 Pharmacokinetic properties

#### Distribution

Mean plasma concentrations of piperacillin and tazobactam at steady state of the combination appear in Tables 2 and 3. Peak piperacillin and tazobactam plasma concentrations are attained immediately after completion of an intravenous infusion. When given with tazobactam, piperacillin plasma levels are similar to those attained when equivalent doses of piperacillin are administered alone.

Table 2: Plasma levels in adults after a thirty-minute intravenous infusion of piperacillin/tazobactam (steady state)

| PIPERACILLIN PLASMA LEVELS (μg/mL)                             |        |      |        |      |      |      |
|----------------------------------------------------------------|--------|------|--------|------|------|------|
| Piperacillin/Tazobactam Dose 30*min 1 hr 1.5 hr 2 hr 3 hr 4 hr |        |      |        |      | 4 hr |      |
| 2 g/250 mg                                                     | 134    | 57   | 29     | 17   | 5    | 2    |
| 4 g/500 mg                                                     | 298    | 141  | 87     | 47   | 16   | 7    |
| TAZOBACTAM PLASMA LEVELS (μg/mL)                               |        |      |        |      |      |      |
| Piperacillin/Tazobactam Dose                                   | 30*min | 1 hr | 1.5 hr | 2 hr | 3 hr | 4 hr |
| 2 g/250 mg                                                     | 14.8   | 7.2  | 4.2    | 2.6  | 1.1  | 0.7  |
| 4 g/500 mg                                                     | 33.8   | 17.3 | 11.7   | 6.8  | 2.8  | 1.3  |

<sup>\*</sup>Completion of 30-minute infusion

Table 3: Plasma levels in adults after an intramuscular injection of piperacillin/tazobactam (steady state)

| PIPERACILLIN PLASMA LEVELS (μg/mL)  |        |      |        |      |      |      |
|-------------------------------------|--------|------|--------|------|------|------|
| Piperacillin/Tazobactam Dose 30 min |        |      | 1.5 hr | 2 hr | 3 hr | 4 hr |
| 2 g/250 mg                          | 55     | 45   | 31     | 19   | 8    | 4    |
| TAZOBACTAM PLASMA LEVELS (μg/mL)    |        |      |        |      |      |      |
| Piperacillin/Tazobactam Dose        | 30 min | 1 hr | 1.5 hr | 2 hr | 3 hr | 4 hr |
| 2 g/250 mg                          | 10.5   | 7.4  | 4.9    | 3.2  | 1.4  | 0.9  |

In healthy subjects piperacillin/tazobactam plasma elimination half lives range from 0.7 to 1.2 hours following single or multiple doses. These half-lives are unaffected by dose or duration of infusion. Piperacillin and tazobactam are 21% and 23% respectively, bound to plasma proteins. The protein binding of either piperacillin or tazobactam is unaffected by the presence of either compound. Piperacillin and tazobactam are widely distributed in tissues and body fluids including intestinal mucosa, gall bladder, lung and bile.

#### Metabolism

Piperacillin does not undergo biotransformation in humans. Approximately 20% of a dose of tazobactam is metabolised to a single metabolite that has been found to be microbiologically inactive.

#### **Excretion**

Piperacillin and tazobactam are eliminated by the kidney via glomerular filtration and tubular secretion. Piperacillin is excreted rapidly as unchanged drug, with 69% of the dose appearing in the urine. Piperacillin is also secreted into bile. Tazobactam and its metabolite are eliminated primarily by renal excretion, with 80% of the dose appearing as unchanged drug and the remainder of the dose appearing as the metabolite.

# Impaired renal function

The half-life of piperacillin and tazobactam increases with decreasing creatinine clearance. The increase is two-fold and four-fold for piperacillin and tazobactam, respectively, at creatinine clearance below 20 mL/min compared to patients with normal renal function. Dosage adjustments are recommended when creatinine clearance is below 40 mL/min, see Section 4.2 - Dose and method of administration.

Piperacillin and tazobactam are removed from the body during haemodialysis with 31% and 39% of the doses of piperacillin and tazobactam, respectively, recovered in the dialysis fluid. Piperacillin and tazobactam are removed from the body by peritoneal dialysis with 5% and 12% of the dose, respectively, appearing in the dialysate. For dosage recommendations in patients undergoing haemodialysis, see Section 4.2 - Dose and method of administration.

# Impaired liver function

Piperacillin half-life and AUC were increased by 25% and 40% respectively and tazobactam half-life and AUC by 18% and 23% respectively in patients with hepatic impairment. However, dosage adjustments in patients with hepatic impairment are not necessary.

#### Children

The pharmacokinetics of piperacillin and tazobactam have been examined in 24 paediatric patients aged 2 months to 12 years receiving 100 mg/kg piperacillin/12.5 mg/kg tazobactam (Table 4). The maximum concentration ( $C_{max}$ ) for both piperacillin and tazobactam is increased relative to the maximum adult dose but the predicted time above the minimum inhibitory concentration is slightly decreased. The dosage of 100 mg/kg piperacillin/12.5 mg/kg tazobactam administered every 8 hours is predicted to provide coverage 31% to 61% of the time for the range of MIC values of 2  $\mu$ g/mL to 16  $\mu$ g/mL commonly found in intra-abdominal infections in children.

Table 4: Piperacillin and tazobactam pharmacokinetics in children (cv%) following single doses

| Dose         | Patient | Cmax     | AUC      | CL          | Vss (L/kg) | T½       |
|--------------|---------|----------|----------|-------------|------------|----------|
|              | age     | (mg/L)   | (mg.h/L) | (mL/min/kg) |            | (h)      |
| Piperacillin | 2-5 mo  | 382 (15) | 539 (29) | 3.3 (24)    | 0.28 (32)  | 1.3 (16) |
| 100mg/kg     | 6-23 mo | 344 (15) | 373 (27) | 4.8 (29)    | 0.25 (27)  | 1.0 (24) |
|              | 2-5 y   | 408 (80) | 331 (21) | 5.2 (19)    | 0.23 (36)  | 0.9 (26) |
|              | 6-12 y  | 394 (24) | 404 (17) | 4.2 (21)    | 0.24 (42)  | 0.8 (27) |
| Tazobactam   | 2-5 mo  | 43 (49)  | 63 (32)  | 3.6 (28)    | 0.32 (31)  | 1.3 (15) |
| 12.5mg/kg    | 6-23 mo | 35 (22)  | 42 (23)  | 5.2 (24)    | 0.33 (29)  | 1.1 (23) |
|              | 2-5 y   | 45 (42)  | 37 (24)  | 5.8 (19)    | 0.27 (33)  | 0.9 (29) |
|              | 6-12 y  | 45 (25)  | 57 (27)  | 3.9 (36)    | 0.28 (36)  | 1.3 (57) |

# 5.3 Preclinical safety data

#### Genotoxicity

Mutagenicity studies with piperacillin and tazobactam showed no evidence of genotoxicity in assays for chromosomal and DNA damage. One assay for gene mutations (Mouse lymphoma assay) was weakly positive at tazobactam and piperacillin concentrations  $\geq 3200~\mu g/mL$  and  $2500~\mu g/mL$ , respectively.

#### Carcinogenicity

Long-term carcinogenicity studies of TAZOCIN EF in animals have not been performed.

# 6. PHARMACEUTICAL PARTICULARS

# 6.1 List of excipients

- Citric acid monohydrate
- Disodium edetate (EDTA).

Each vial of TAZOCIN EF contains a total of 2.84 mEq (65 mg) of sodium per gram of piperacillin.

# 6.2 Incompatibilities

TAZOCIN EF should not be mixed with other drugs in a syringe or infusion bottle since compatibility has not been established. Whenever TAZOCIN EF is used concurrently with another antibiotic, the drugs must be administered separately (see Section 4.2 - Dose and method of administration and Section 4.5 - Interactions with other medicines and other forms of interactions).

Because of chemical instability, TAZOCIN EF should not be used with solutions containing only sodium bicarbonate or having a pH in the basic range.

TAZOCIN EF should not be added to blood products or albumin hydrolysates.

# 6.3 Shelf life

In Australia, information on the shelf life can be found on the public summary of the Australian Register of Therapeutic Goods (ARTG). The expiry date can be found on the packaging.

# 6.4 Special precautions for storage

# Lyophilised powder

4.5 g vial - Store below 30°C. Protect from light.

#### **Solutions**

Diluted solutions should be used immediately.

# 6.5 Nature and contents of container

4.5 g glass vial containing piperacillin sodium 4.170 g equivalent to 4 g piperacillin and tazobactam sodium 0.5366 g equivalent to 500 mg tazobactam.

# 6.6 Special precautions for disposal

In Australia, any unused medicine or waste material should be disposed of by taking to your local pharmacy.

# **6.7 Physicochemical properties**

# **Chemical structure**

Piperacillin sodium

Piperacillin sodium is derived from D(-)- $\alpha$ -aminobenzylpenicillin. The chemical name of piperacillin sodium is sodium (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazine-carboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid. The empirical formula is  $C_{23}H_{26}N_5NaO_7S$  and the molecular weight is 539.54.

Tazobactam sodium

Tazobactam sodium is a derivative of the penicillin nucleus. Chemically, tazobactam is a penicillanic acid sulfone. Its chemical name is sodium  $(2S-(2\alpha,3\beta,5\alpha)-3-methyl-7-oxo-3-(1H-1,2,3-triazol-1-ylmethyl)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide. The empirical formula is <math>C_{10}H_{11}N_4NaO_5S$  and the molecular weight is 322.28.

#### **CAS Number**

Piperacillin sodium - CAS Registry Number: 59703-84-3

Tazobactam sodium - CAS Registry Number: 89785-84-2

# 7. MEDICINE SCHEDULE (POISONS STANDARD)

S4 - Prescription Only Medicine

# 8. SPONSOR

Pfizer Australia Pty Ltd Level 17, 151 Clarence Street Sydney NSW 2000

Toll Free Number: 1800 675 229 www.pfizermedicalinformation.com.au

# 9. DATE OF FIRST APPROVAL

11 April 2007

# 10. DATE OF REVISION

03 June 2024

#### Reference

1. Daley, D., Mulgrave, L., Munro, S., Smith, H. and Dimech, W. An evaluation of the *in vitro* activity of piperacillin/tazobactam. Pathology 28: 167-172, 1996.

# **SUMMARY TABLE OF CHANGES**

| Section changed          | Summary of new information                                                                                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 4.4                      | Removal of lignocaine as diluent precaution.                                                                            |
| 5.1                      | Addition of Pharmacotherapeutic group.                                                                                  |
|                          | Updated the criteria for susceptibility testing on the basis of the breakpoint data updated in the CLSI published 2022. |
|                          | Removal of anaerobic bacteria from 'Species for which acquired resistance may be a problem.'                            |
|                          | Addition of Klebsiella pneumoniae strain and MIC.                                                                       |
|                          | MIC for existing <i>Bacteroides fragilis</i> strain revised from '0.125' to '0.12.'                                     |
| 2, 4.2, 4.4, 6.4,<br>6.5 | Removal of deregistered Tazocin EF 2 g/250 mg powder for injection vial, AUST R 132521.                                 |
| 8                        | Updated Sponsor web address.                                                                                            |
| All                      | Minor editorial changes.                                                                                                |

<sup>®</sup> Registered trademark.